Toxic Black Mold Inspection, Testing, Removal, & Prevention
in Midwestern and Eastern USA and Canada by Environmental Hygienists and Industrial Hygienists Phillip & Divine Fry

Email   ►Phone USA 1-810-639-0523 or 1-480-310-7970
Toxic Mold Species Information Toxic Mold Pictures  Mold Health Effects  Mold Inspection 
Mold Removal  Mold Terms & Definitions  Mold Victim Rights  Site Map

Cunninghamella Mold Species

The U.S. Government's Occupational Safety and Health Administration [OSHA] lists the following as the health effects of Cunninghamella mold: Allergen, Irritant, Hypersensitivity pneumonitis, Dermatitis.

Taxonomic Classification

Kingdom: Fungi
Phylum: Zygomycota
Order: Mucorales
Family: Cunninghamellaceae
Genus: Cunninghamella

Cunninghamella bertholletiae showing simple sporangiophores forming a swollen, terminal vesicle around which single-celled, globose to ovoid sporangiola develop on swollen denticles.

Colonies on Sabouraud's agar are very fast growing, white at first, but becoming rather dark grey and powdery with development. Sporangiophores to 20 um wide, straight, with verticillate or solitary branches. Vesicles subglobose to pyriform with the terminal ones up to 40 um and the lateral ones 10 to 30 um in diameter. Sporangiola are globose (7-11 um diameter), ellipsoidal (9-13 x 6-10 um), verrucose or short-echinulate, hyaline singly but brownish in mass. Temperature: optimum 25-30C; maximum up to 50C.

The genus Cunninghamella is characterized by white to grey, rapidly growing colonies, producing erect, straight, branching sporangiophores. These sporangiophores end in globose or pyriform-shaped vesicles from which several one-celled, globose to ovoid, echinulate or smooth-walled develop on swollen denticles. Chlamydoconidia and zygospores may also be present. Cunninghamella species are mainly soil fungi of the Mediterranean and subtropical zones, and they are only rarely isolated in temperate regions. The genus now contains seven species, with C. bertholletiae the only species known to cause disease in man and animals.

Description and Natural Habitats

Cunninghamella is a filamentous fungus found in soil and plant material, particularly at Mediterranean and subtropical zones. It has also been recovered from animal material, cheese, and Brazil nuts. In addition to being a common contaminant, Cunninghamella is an opportunistic fungus that may cause infections in immunocompromised hosts.


The genus Cunninghamella currently contains seven species. While Cunninghamella bertholletiae, Cunninghamella elegans, and Cunninghamella echinulata are the most common species, Cunninghamella bertholletiae is the only known human and animal pathogen. The nomenclature for Cunninghamella species is rather complicated. While some authorities accept Cunninghamella bertholletiae, Cunninghamella elegans, and Cunninghamella echinulata as separate species, others tend to use the names Cunninghamella bertholletiae and Cunninghamella echinulata as the synonyms of Cunninghamella elegans. However, the latter approach is not very convincing, since the purely gray color of its colonies and its inability to grow at 45C clearly differentiates Cunninghamella elegans from Cunninghamella bertholletiae. Thus, we prefer to follow the previous approach and accept the existence of the three species separately in the genus Cunninghamella.

Pathogenicity and Clinical Significance

Cunninghamella spp. are among the causative agents of zygomycosis. Although the term mucormycosis has often been used for this syndrome, zygomycosis is now the preferred term for this angio-invasive disease. Trauma, diabetes mellitus, immunosuppression due to various reasons (hematological malignancies, organ transplantation, AIDS), and desferoxamine therapy are the major risk factors for development of zygomycosis. Among the other genera belonging to the class zygomycetes, Cunninghamella is particularly sensitive to desferoxamine therapy. Lastly and importantly, Cunninghamella infections have been reported in a number of cases receiving antifungal prophylaxis with itraconazole.

Cunninghamella bertholletiae may cause rhinocerebral, pulmonary, cutaneoarticular, and disseminated forms of zygomycosis. The infection usually starts after inhalation of the spores or inoculation of the fungus following the primary breakdown of the skin integrity due to a trauma.

Macroscopic Features

Cunninghamella colonies are rapidly growing (mature in 4 days), cottony, and white to tannish-gray in color. The reverse is pale. Cunninghamella elegans produces purely gray colonies. While Cunninghamella bertholletiae may grow at temperatures as high as 45C, Cunninghamella elegans fails to grow at this temperature.

Microscopic Features

Nonseptate or sparsely septate broad hyphae, sporangiophores, terminal vesicles, sporangioles (sporangiola; sing. sporangiolum), and sporangiospores are visualized. Sporangiophores are erect and form short lateral branches each of which terminates in a swollen vesicle. The vesicle (30-65 m in diameter) has spine-like denticles on its surface. Sporangioles (5-8 x 6-14 m) are round to oval in shape, one-spored, and are formed on these denticles. Sporangiospores are one-celled, solitary, and globose to ovoid in shape. The walls of the spores often have needle-like crystals. Zygospores have tuberculate projections and may form only after appropriate mating studies.

Laboratory Precautions

No special precautions other than general laboratory precautions are required.


Very few data are available and there is as yet no standard method for in vitro susceptibility testing of Cunninghamella species. In an in vitro study where two Cunninghamella echinulata strains were tested, the rank of MICs was found to be voriconazole, ketoconazole, amphotericin B, itraconazole.   On the other hand, amphotericin B, ketoconazole, and itraconazole generated considerably high MICs for some isolates of Cunninghamella spp. in other workers' hands. Liposomal amphotericin B has been used for treatment of Cunninghamella infections. However, prognosis is often poor.

The mycological information gathered and organized in this extensive research on different Pathogenic Molds was  sourced out from the list of informative websites below: | | | | | | | | | | | | | | | |


[Home] [Mold Species] [Absidia] [Acremonium] [Alternaria] [Aspergillus] [Aureobasidium] [Basidiobolus] [Beauveria] [Bipolaris] [Blastomyces] [Candida] [Chaetomium] [Chysosporium] [Cladophialophora] [Cladosporium] [Coccidioides] [Conidiobolus] [Cryptococcus] [Cunninghamella] [Curvularia] [Drechslera] [Emmonsia] [Engyodontium] [Epidermophyton] [Exophiala] [Exserohilum] [Fonsecaeae] [Fusarium] [Histoplasma] [Lecythophora Species] [Madurella] [Microsporum] [Mucor] [Paecilomyces] [Paracoccidioides] [Penicillium] [Phialophora] [Phoma] [Rhinocladiella] [Rhizomucor] [Rhizopus] [Scedosporium] [Scopulariopsis] [Scytalidium] [Sporothrix] [Stachybotrys] [Trichoderma] [Trichophyton] [Verticillium] [Wallemia] [Wangiella dermatitidis] [Yeast]

[Home] [Toxic Mold Species] [Mold Health Effects] [Mold Inspection] [Mold Remediation] [Mold Advice] [Mold-Terms-Terminology] [ Site Map] [Contact-Us]

Copyright 2002-2015 Environmental Hygienists All Rights Reserved   Updated Jan. 18, 2015